

## Localizador de falhas de cabos PCLD-800T

### Manual do usuário



Tianjin Grewin Technology Co.Ltd Web:www.grewin-tech.com

Add:DongLi Distr Tianjin City, China Phone: +86-22-84943756

WhatsApp:+86-13072088960

Email:salesmanager@grewin-tech.com

## prefácio

Em primeiro lugar, agradeceremos sinceramente por escolher e usar o localizador de falhas de cabos. Antes de usá-lo, leia atentamente este manual. Este manual aplica-se ao localizador de falhas do cabo. Se houver alguma alteração, perdoe-nos por não inform á-lo. Os direitos de autor deste manual pertencem à nossa empresa. Sem nossa permissão, as unidades e indivíduos não podem modificar este manual nem copiá-lo ou distribuí-lo, especialmente para fins lucrativos. Nossa empresa se reserva o direito de permitir que criminosos assumam a obrigação legal.

## **conte**ú**do**

| Resumo do Capítulo I                            | 5  |
|-------------------------------------------------|----|
| 1. Introdução                                   | 5  |
| 2.especificações                                | 5  |
| 3. especificações                               | 6  |
| 1) Teste de Reflexão de Impulso                 | 6  |
| 2) Teste de ponte inteligente                   | 6  |
| 4.Setup                                         | 7  |
| 1) Configuração do painel                       | 7  |
| 2) Linha de teste                               | 8  |
| 3) Alterar entre o teste de reflexão de pulso e |    |
| teste de ponte                                  | 8  |
| 5. Etapas de teste                              | 9  |
| 1) Diagnóstico de Caracteres de Falha           | 9  |
| 2)Escolha o modo de teste                       | 11 |
| 3) Detector de distância                        | 11 |
| 4) Corrigido um defeito no cabo                 | 12 |
|                                                 |    |

# Resumo do Capítulo I 1. Introdução

Este localizador de cabos totalmente automático é um produto de alta tecnologia de sucesso que adota a tecnologia de LCD a cores matricial, ARM, FPGA e ARM. Este testador combina o teste de reflexão de pulso (TDR) e o teste de ponte inteligente (ponte) para medir a localização exata da falha, por exemplo, linha quebrada, falha cruzada, conexão à terra, isolamento deficiente e contato deficiente com cabos revestidos com chumbo.

É uma ferramenta eficaz para reduzir o tempo de resolução de problemas, melhorar a eficiência do trabalho e reduzir a carga de trabalho do pessoal de manutenção online. Também pode ser usado na aceitação e inspeção de cabos elétricos para projetos online.

## 2. especificações

 Tela LCD colorida grande (480 x 280 pontos); interface de operação humanizada; Seis teclas de função e operação simples..

Teste O teste de reflexão de impulso (TDR) e o teste de ponte inteligente (bridge) podem testar linhas

#### Localizador de falhas de cabos PCLD-800T

linhas de interseção descontí nuas, isolamento deficiente e outros tipos de falhas.

- A função de teste manual é mantida.
- Menu O menu completo em inglês é fácil de aprender e usar.
- Com o megametro e o ohmímetro, você pode testar a resistência do isolamento e a resistência do loop.
- Com a porta USB, é fácil baixar dados de teste para um computador
- Com a porta USB, é fácil baixar os dados de teste para o disco U e analisar os dados no computador.
- Bateria de lítio recarregável, carregamento inteligente sem serviço.
- Pequeno tamanho, peso leve e design portátil.

## 3. especificações

## 1) Teste de Reflexão de Impulso (TDR)

- Alcance máximo: 8 km (16KM OPCIONAL, 32KM)
- Zona morta: 0 m
- Precisão do teste: 1m
- Largura de pulso: 40ns-10μ s com ajuste automático
- Ajuste automático do equilíbrio de impedância.
- Ajuste de ganho automático e manual

## 2) Teste Pont Inteligente (Bridge)

#### Localizador de falhas de cabos PCLD-800T

- Máxima resistência de isolamento ruim: 100 MO.
- Precisão do teste: ± 1% × comprimento do cabo
- O comprimento máximo do cabo de teste: 9999 m
- Tempo de carregamento: 4 horas
- Tempo de operação contínua: 8 horas
- Dimensão: 220 × 160 × 90 (mm3)
- Peso: 1 kg.

## 4. Setup

## 1) Configuração do painel

• **ON / OFF**:o interrupteurd'alimentation

**Auto:** Pressione esta tecla, o instrumento irá realizar o teste automaticamente.

pulsar: No teste de reflexão de pulso, pressione essa tecla para que o instrumento realize um teste de pulso manual. No teste de ponte, pressione esta tecla e o instrumento entrar á automaticamente na interface de teste de reflexão de pulso; Os usuários também podem executar operações usando o símbolo de menu.

#### Set: ajuste os parâmetros do teste

◄►: No teste de reflexão de pulso, ele é usado para mover o cursor; No teste da ponte elétrica, ela é usada para ajustar os parâmetros relevante; Os usuários também podem executar operações usando o sí mbolo de menu

USB: usado para se comunicar com o computador host.

**Testador:** É usado para inserir e conectar as linhas de teste.

Load: O plugue para carregar o instrumento.

## 2) Linha de teste



Figura 1.4.1

Existem três clipes no final da linha de teste principal no total.

Sob o teste de reflexo de impulso, simplesmente use as duas linhas com o clipe vermelho e o clipe amarelo; No teste de ponte inteligente, use o total das três linhas. O método detalhado de uso será apresentado nos capítulos seguintes.

# 3) Alterar entre o teste de reflexão de pulsos e o teste de ponte

Pressione "ON / OFF", ligue o instrumento, o modo de teste será automaticamente selecionado para o teste de reflexão de pulso. Pressione "Ajustar" até que você pressione ◄ ou ► para entrar no modo Ponte para exibir a tela colorida invertida, pressione "◄" ou "►" para entrar no teste da ponte elétrica. Sob o teste da ponte el étrica, pressione "Pulse" para entrar no teste de reflexão de pulso.

## 5. Etapas de teste

## 1) Diagnóstico de Caracteres de Falha

Os caracteres de falhas de cabos de telecomunicações podem ser simplesmente divididos nos seguintes tipos:

#### • linha tracejada:

Uma ou mais linhas de cabo são interrompidas e a comunicação é interrompida. Este tipo de defeito deve ser testado com o teste de pulso.

#### • linha cruzada:

Ele pode ser dividido em linhas de aterramento, linhas cruzadas e outras linhas cruzadas, o que significa que a linha principal vai para a capa protetora, entre o par idêntico de linhas centrais, a camada isolante entre os diferentes pares de linhas e o núcleo é destruí do; A resist ê ncia de isolamento cai para um ní vel muito baixo (abaixo de várias centenas a vários milhares de ohms), pode at é causar curto-circuito;

A qualidade da comunicação sofre influências sérias. Este tipo de falha pode ser usado primeiro pelo método de teste de pulso. Quando as formas de onda são difíceis de distinguir, altere-as para o teste da ponte elétrica.

#### Isolamento ruim:

Quando a água ou a umidade invadem o material isolante do núcleo do cabo, a resistência isolante diminui e leva a uma perda de qualidade de comunicação ou bloqueios. Esse tipo de linha tracejada é semelhante a linhas cruzadas, linhas cruzadas e aterramento. A resistência à falha é grande (maior que vários milhares de ohms) e o grau de defeito é pequeno. Geralmente, se a resistência de isolamento for inferior a 2 M ohms, a qualidade da comunicação será afetada. Nós devemos continuar a eliminação. Esse tipo de falha geralmente não pode ser verificado pelo teste de pulso, mas você deve passar no teste da ponte.

. Quando há falhas de linha, você deve primeiro usar um cartão de teste, um megâmetro ou um multímetro para descobrir o caráter e o grau de falha do cabo para escolher o modo de teste mais apropriado a linha e as o pessoal de teste conhece a direção da linha e as

O pessoal de teste conhece a direção da linha e as condições de falha, o que é útil para resolver rapidamente o ponto de falha do cabo. Uma vez que a falha tenha ocorrido, eles levarão em conta o tempo da falha, o escopo, o ambiente, a distância entre as juntas, o clima e outros possíveis problemas. Em seguida, julgue o segmento do cabo aproximadamente de acordo com os resultados do teste

## 2) Escolha o modo de teste:

Quando a resistência à falha é menor do que várias centenas a vários kilo ohms, falamos de baixa resistência, caso contrário falamos em isolamento ruim ou defeito de alta resistência. Alta resistência e baixa resistência não tê m limite explícito.

O teste de pulso é adequado para testar linhas quebradas e linhas transversais de baixa resistência. Às vezes, o isolamento severo também pode usar testes de pulso. O funcionamento dos testes de pulso é direto, visão simples, não é necessário coordenar as outras funções, ele deve ser usado principalmente durante os testes.

O teste da ponte pode verificar defeitos de isolamento de alta resistência, mas você deve encontrar uma boa linha. Além disso, precisa de coordenação do outro lado. O trabalho de preparação para o exame também é bastante entediante. Você deve usar o método da ponte após confirmar que o teste de pulso não pode provar a falha.

## 3) Detector de distância:

Ao realizar o teste, primeiro é necessário cortar as linhas ou equipamentos em ambos os lados do cabo a ser testado.

Primeiro, execute testes no equipamento para reparar o menor segmento de falha, em seguida, realize testes de campo repetidos para localizar o ponto específico de falha

## 4) defeito de cabo fixo:

Você pode localizar o local do defeito com base nos resultados do teste e na comparação dos dados do mapa. Quando o material cartográfico não está completo ou conté m erros, você pode estimar a posição aproximada da falha de acordo com a situação do cabo apreendido.

Em seguida, você pode combinar o ambiente para analisar as causas do erro até encontrar o erro do cabo. Por exemplo, há um selo no intervalo estimado; Você pode julgar aproximadamente que a falha está na articulação. Quanto maior o intervalo, maiores serão os erros de teste.